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Motivation

Figure: Uncertainty for semantic segmentation. (Fig. 1 of Kendall et al., 2017)
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Laplace approximation: Notation

We will be focusing on supervised learning over inputs x1:n and labels y1:n.

Neural network: Let fθ : X → Y be a neural network with parameters θ.

fθ ≜ f
(L)

θ(L) ◦ · · · ◦ f
(1)
θ(1) , θ ≜ Concat

󰀅
θ(1), . . . ,θ(L)

󰀆
∈ RP , θ(ℓ) ∈ RD in·Dout

Probabilistic inference: Update our belief over θ after seeing {x1:n, y1:n}.

p(θ | x1:n, y1:n)
󰁿 󰁾󰁽 󰂀

posterior dist.

=

likelihood󰁽 󰂀󰁿 󰁾
p(y1:n | x1:n,θ)

prior dist.󰁽 󰂀󰁿 󰁾
p(θ)

󰁝
p(y1:n | x1:n,θ) p(θ)dθ

󰁿 󰁾󰁽 󰂀
marginal likelihood
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Laplace approximation: VI and MAP estimation

Variational inference: Goal is to approximate the posterior distribution.

p(θ | x1:n, y1:n) =
p(y1:n | x1:n,θ) p(θ)󰁝
p(y1:n | x1:n,θ) p(θ)dθ

≈ q(θ |λ) ≜ qλ(θ)

MAP estimation: Rely on SGD to find a maximum a posteriori estimate.

θ̂ = argmax
θ

p(θ | x1:n, y1:n)

= argmin
θ

− log p(θ | x1:n, y1:n)

= argmin
θ

− log p(y1:n | x1:n,θ) − log p(θ)
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Laplace approximation: Taylor expansion

Laplace’s method (P.S. Laplace, 1774): Let ψ(θ) ≜ log p(θ | x1:n, y1:n) .

Take the 2nd-order Taylor expansion of ψ(θ) around the MAP estimate θ̂.

ψ(θ) ≈ ψ(θ̂) + (θ − θ̂)
✚
✚
✚

󰁫
. . .

󰁬
+

1
2
(θ − θ̂)⊤

󰁫
∇2

θψ(θ)
󰁬

θ̂
(θ − θ̂)

Compare this to the log-p.d.f. of a multivariate Normal distribution (MVN).

logN (θ;µ,Σ) = −1
2
(θ − µ)⊤ Σ−1 (θ − µ) + const.
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Laplace approximation: Mean and covariance

The Laplace approximation q of p is a MVN (mean θ̂, cov. matrix Σ̂).

q(θ) ≜ N (θ; θ̂, Σ̂) θ̂ = argmax
θ

ψ(θ) Σ̂ = −
󰁫
∇2

θψ(θ)
󰁬−1

θ̂

Beware! Σ̂ needs to be symmetric and positive semi-definite.

However ψ(θ) being twice continuously diff. around θ̂ is sufficient:
Symmetric: Order of differentiation does not matter.
Positive semi-definite: Hessian taken at θ̂ is negative semi-definite.
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Laplace approximation: Predictive posterior

How do we make predictions using our Laplace approximation?

p(y󰂏 | x󰂏, x1:n, y1:n) =

󰁝
p(y󰂏 | x󰂏,θ) p(θ | x1:n, y1:n)dθ

≈
󰁝

p(y󰂏 | x󰂏,θ) q(θ)dθ

= E
θ∼q

󰁫
p(y󰂏 | x󰂏,θ)

󰁬

(a) Step 1: Find MAP (b) Step 2: Fit approx. (c) Step 3: Predict!

Figure: Fig. 1 of (Daxberger et al., 2021)
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Laplace approximation: Bayesian neural networks?

LA hinges on inverting Hessian of the log-posterior distribution w.r.t. θ

Σ̂ = −
󰁫
∇2

θψ(θ)
󰁬−1

θ̂
= −

󰁫
∇2

θ log p(y1:n | x1:n,θ) +∇2
θ log p(θ)

󰁬−1

θ̂

Known to work with small neural networks. (D.J.C. MacKay, 1992)
However the Hessian quickly becomes problematic as P grows.

Auto-diff. frameworks help but Hessian still needs O(P2) storage.
Inversion can also be difficult. (compute & numerical instability)
Not guaranteed to be negative semi-definite! (e.g. saddle points)

K. Bouchiat (ETH Zürich) Advances in Laplace Inf. for BDL March 25th, 2025 8 / 31



Hessian approximation: Fisher information matrix

Fisher information: Avoid 2nd-order differentiation and focus on the score.

Σ̂ ≈ ΣFish., ΣFish. ≜ −

󰀵

󰀷
n󰁛

i=1
E

y∼p(... )

󰀗󰁫
∇θ log p(y | x i ,θ)

󰁬2

θ̂

󰀘
+ . . .

󰀶

󰀸
−1

Note: Guaranteed positive semi-definite. (cf. info. geometry, natural grad.)
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Hessian approximation: Gen. Gauss-Newton matrix

Gen. Gauss-Newton (GGN): Let Jθ(x) ≜
󰁫
∇θfθ(x)

󰁬

θ̂
denote Jacobian.

Σ̂ ≈ ΣGGN, ΣGGN ≜ −
󰀥

n󰁛

i=1

Jθ(x i )
󰁫
∇2

f p(yi | f )
󰁬

f̂
Jθ(x i )

⊤+ . . .

󰀦−1

Note: Equivalent to the Fisher for most common log-likelihoods.
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Hessian approximation: Matrix factorization

The full covariance matrices ΣFish. and ΣGGN are still
quadratic in the number of parameters P , making them
difficult to store and difficult to invert.

Diagonal factorization: Keep the matrix diagonal and
ignore the off-diagonal elements. Lightweight but highest
tradeoff in approximation fidelity.

Low-rank factorization: Use a low-rank approximation,
such as truncated singular value decomposition (SVD).
Can be combined with the diagonal factorization.
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Hessian approximation: Kronecker factorization

Block-diagonal factorization: Factorize across neural
network layers by approximating diagonal blocks for each
layer ℓ, i.e. making the assumption of layer independence.

Kronecker factorization (Ritter et al., 2018): The approximate blocks for
a single data point can be formulated as a Kronecker product (K-FAC).

−
󰀅
Σ

(ℓ)
GGN

󰀆−1
=

n󰁛

i=1

󰁫
A(ℓ)
i ⊗ B(ℓ)

i

󰁬

≈
󰀥

n󰁛

i=1

A(ℓ)
i

󰀦
⊗

󰀥
n󰁛

i=1

B(ℓ)
i

󰀦
≜ A(ℓ) ⊗ B(ℓ)

Note: A(ℓ) ∈ RD
(ℓ)
out×D

(ℓ)
out , B(ℓ) ∈ RD

(ℓ)
in ×D

(ℓ)
in and both are pos. semi. definite.
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Hessian approximation: Predictive misspecification

Misspecification? Used the GGN but now the predictive is underfitting?

Prior: p

󰀕󰀗
w
b

󰀘󰀖
= N (0, I2)

Model:

f (x ;w , b) = 5 tanh(wx + b)

Likelihood:

p([y = 1] | f ) = sigmoid(f )

The BNN underfits because some

samples can give extremely wrong

predictions (e.g. sample shown in

orange). How do we correct this? Figure: Fig. 3 of (Immer et al., 2021a)
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Linearized Laplace: Linearization of fθ

Recall that Σ̂ depends on the Hessian of the log-posterior dist. w.r.t. θ.

Σ̂ = −
󰁫
∇2

θ log p(y1:n | x1:n,θ) +∇2
θ log p(θ)

󰁬−1

θ̂

Focus on the log- likelihood . Let Hθ(x) ≜
󰁫
∇2

θfθ(x)
󰁬

denote Hessian.

∇θ log p(yi | x i ,θ) = Jθ(x i )
⊤
󰁫
∇f log p(yi | f )

󰁬

∇2
θ log p(yi | x i ,θ) =Hθ(x i )

⊤
󰁫
∇f log p(yi | f )

󰁬

−Jθ(x i )
󰁫
∇2

f p(yi | f )
󰁬

f̂
Jθ(x i )

⊤

󰁿 󰁾󰁽 󰂀
GGN approximation!
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Linearized Laplace: Linearization of fθ

GGN approx. makes the assumption that Hθ(x i )
⊤
󰁫
∇f log p(yi | f )

󰁬
is zero.

Condition 1: The residual
󰁫
∇f log p(yi | f )

󰁬
vanishes for all data points.

This is not desired, as it would indicate overfitting, nor is it very realistic.

Condition 2: The Hessian Hθ(x i ) vanishes for all input points. This is
true for linear networks, and we can enforce it by linearizing our network!

Local linearization of fθ (Immer et al., 2021a): Applying GGN approx. to
the Hessian of the likelihood turns underlying model from BNN to GLM.

f lin.
θ (x) = fθ(x) + (θ − θ̂)Jθ̂(x)
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Linearized Laplace: GP formulation

Function-space equivalence (Immer et al., 2021a): This linearized model
in weight-space is equivalent to a Gaussian process (GP) in function-space.

m(x) = E
θ

󰁫
f lin.
θ (x)

󰁬
= f lin.

θ̂
(x)

k(x , x ′) = Covθ
󰁫
f lin.
θ (x), f lin.

θ (x ′)
󰁬

= Jθ̂(x)ΣGGNJθ̂(x)
⊤

Function-space predictive (Immer et al., 2021a): Leads to a closed form
for sampling from the network. Use Monte-Carlo simulation for predictive.

p(f 󰂏 | x󰂏, x1:n, y1:n) = N (f 󰂏; fθ̂(x
󰂏),Jθ̂(x

󰂏)ΣGGNJθ̂(x
󰂏)⊤)

p(y󰂏 | x󰂏, x1:n, y1:n) = E
f 󰂏

󰁫
p(y󰂏|f 󰂏)

󰁬
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Linearized Laplace: Demonstration

Figure: Using GLM as the underlying model. (Fig. 3 of Immer et al., 2021a)

Figure: Mean and uncertainty on banana dataset. (Fig. 4 of Immer et al., 2021a)
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Linearized Laplace: Model selection

Marginal likelihood (Immer et al., 2021b) : Likelihood of model M.
Overly simple or complex models have low-probability (Occam’s razor).

log p(y1:n | x1:n,M) =

󰁝
log p(y1:n | x1:n,θ) + log p(θ |M)dθ

≈ log p(y1:n | x1:n, θ̂) + log p(θ̂ |M) − 1
2
log

󰀏󰀏󰀏󰀏
1
2π

Σ−1
󰀏󰀏󰀏󰀏

Note: Model M can be choice of architecture, hyper-parameters, etc.
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Linearized Laplace: Model selection

Figure: Marginal likelihood on toy regression. (Fig. 1 of Immer et al., 2021b)

Figure: Marginal likelihood and test accuracy (Fig. 2 of Immer et al., 2021b)
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Linearized Laplace: Hyperparam. optimization

Hyperparam. optimization (Immer et al., 2021): Diff. hyperparams M∂ .
Alternate between optimizing params. θ and hyperparams. M∂ online.

M∂
t+1 ← M∂

t + γ∇M∂ log q(y1:n | x1:n,M)

Note: a.k.a. empirical Bayes or type-II maximum likelihood estimation.

Figure: Optimizing marg. lik. in banana dataset. (Fig. 3 of Immer et al., 2021b)

K. Bouchiat (ETH Zürich) Advances in Laplace Inf. for BDL March 25th, 2025 20 / 31



Linearized Laplace: PyTorch package

Figure: Overview of laplace-torch. (Fig. 2 of Daxberger et al., 2021)
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Laplace-approximated NAMs: Introduction

Focus on tabular data, d columns of numer. or categ. features x1, . . . , xd .

Neural additive models (Agarwal et al., 2021): Handle input columns
indep. in separate sub-networks to observe the response as we vary inputs.

E[g(y) | x ] = fθ(x) ≜ f
(1)
θ1

(x1) + f
(2)
θ2

(x2) + · · ·+ f
(d)
θd

(xd)

Laplace-approximated NAMs (Bouchiat et al., 2024): Swap the point
estimates with Bayesian neural networks and use linearized Laplace approx.

f lin.
θ (x) ≜ f

(1), lin.
θ1

(x1) + f
(2), lin.
θ2

(x2) + · · ·+ f
(d), lin.
θd

(xd)

f
(j), lin.
θj

(xj) ≜ f
(j)

θ̂j
(xj) + (θj − θ̂j)Jθ̂j

(xj)
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Laplace-approximated NAMs: Introduction

Figure: Diagram of LA-NAM architecture in (Bouchiat et al., 2024).
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Laplace-approximated NAMs: Introduction

Laplace-approximated NAMs (Bouchiat et al., 2024): The independence
of the subnetworks leads to factorized block-diagonal posterior covariance.

q(θ) = N (θ; θ̂,ΣGGN), ΣGGN =

󰀵

󰀹󰀷
Σ

(1)
GGN . . . 0
...

. . .
...

0 . . . Σ
(d)
GGN

󰀶

󰀺󰀸

Block factorization leads to factorized marg. lik. (Immer et al., 2023).

log p(y1:n | x1:n,M) ≈ log p(y1:n, θ̂ | x1:n,M) +
1
2

󰀏󰀏󰀏󰀏
1
2π

Σ−1
Full

󰀏󰀏󰀏󰀏

≥ log p(y1:n, θ̂ | x1:n,M) +
1
2

󰁛

j

󰀏󰀏󰀏󰀏
1
2π

Σ
(j)
GGN

󰀏󰀏󰀏󰀏
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Laplace-approximated NAMs: Toy example

Figure: Demonstration on toy dataset. (Fig. 1 of Bouchiat et al., 2024)
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Laplace-approximated NAMs: MIMIC-III dataset

Figure: Application to MIMIC-III ICU mortality. (Fig. 2 of Bouchiat et al., 2024)
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Laplace-approximated NAMs: MIMIC-III dataset

(a) Local predictions of NAM. (Fig. 3 of Bouchiat et al., 2024)

(b) Local predictions of LA-NAM. (Fig. 4 of Bouchiat et al., 2024)
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Laplace-approximated NAMs: Feature interaction

Laplace-approximated NAMs (Bouchiat et al., 2024): The subnetworks
are not necessarily mutually independent in the true posterior distribution.

Determine mut. inf. using scalar marginal variances σ2
j ,σ

2
j ′ and covariance

σ2
j , j ′ with a last-layer Laplace approximation on output weights θj and θj ′ .

I(θj ;θj ′) = H(θj) + H(θj ′)− H(θj ,θj ′)

≈ 1
2 log

󰀅
σ2
j σ

2
j ′(σ

2
j σ

2
j ′ − σ2

j , j ′)
−1󰀆

= 1
2 log

󰀅
1 − Corr(θj , θj ′)2

󰀆−1

Select top-k , append their f (j , j
′)

θj, j′
(xj , xj ′) interaction subnetworks, fine-tune.
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Laplace-approximated NAMs: Feature interaction

Figure: Feature interaction of LA-NAM. (Fig. 5 of Bouchiat et al., 2024)
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